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E N G I N E E R I N G

A machine-learning–powered spectral-dominant 
multimodal soft wearable system for long-term and 
early-stage diagnosis of plant stresses
Qin Jiang1†, Xin Zhao1†, Tiyong Zhao1†, Wenlong Li2,3†, Jie Ye4†, Xingxing Dong1, Xinyi Wang4, 
Qingyu Liu4, Han Ding1, Zhibiao Ye4, Xiaodong Chen3*, Zhigang Wu1*

Addressing the global malnutrition crisis requires precise and timely diagnostics of plant stresses to enhance the 
quality and yield of nutrient-rich crops, such as tomatoes. Soft wearable sensors offer a promising approach by 
continuously monitoring plant physiology. However, challenges remain in identifying direct physiological indica-
tors of plant stresses, hindering the development of accurate diagnostic models for predicting symptom progres-
sion. Here, we introduce a machine-learning-powered spectral-dominant multimodal soft wearable system 
(MapS-Wear) for precise, long-term, and early-stage diagnosis of stresses in tomatoes. MapS-Wear continuously 
tracks leaf surrounding temperature, humidity, and unique in-situ transmission spectra, which are critical stress-
related indicators. The machine learning framework processes these multimodal data to predict gradual stress 
progression and diagnose nutrient deficiencies in plants over 10 days earlier than conventional computer vision 
methods. Moreover, MapS-Wears enables portable and large-scale screening of grafted tomato varieties in green-
houses, accelerating the identification of compatible grafting combinations. This demonstration highlights the 
potential for high-throughput plant phenotyping and yield improvement.

INTRODUCTION
Affected by various conflicts, climate change, and the global pan-
demic, nearly 2.8 billion people worldwide cannot afford a healthy 
diet, which leads to malnutrition (1). In consequence, imbalanced 
nutritional intake often results in undernutrition (2), obesity (3), 
and other diet-related diseases (4), imposing a notable burden on 
the economies and societies. As a naturally nutritious food rich in 
vitamins, proteins, and dietary fibers (5), tomatoes are among the 
most widely produced agricultural products (6). However, high-
quality tomato production faces substantial challenges due to vari-
ous imperceptible biotic stresses [e.g., diseases (7) and pests (8)] and 
abiotic stresses [e.g., unsuitable temperature (9), drought (10), and 
nutrient deficiencies (11)], which are often difficult to detect early. 
For example, red spider mites are among the most destructive and 
hard-to-control pests for tomatoes, causing host plants to whiten 
and die within weeks without prompt pesticide treatment (12). 
Moreover, deficiencies in essential nutrients—such as nitrogen (N), 
phosphorus (P), and potassium (K)—can severely hinder plant 
growth and fruit production (13). Therefore, advanced techniques 
for the precise and timely diagnosis of plant stresses are critical for 
proactive plant management, reducing costs, and improving pro-
duction efficiency. Noting that tomatoes are often considered as a 
model plant, this technique can potentially be extended to other 
crops as well.

As a crucial organ of plants, leaves not only support vital physi-
ological processes (14)—such as transpiration, photosynthesis, and 
nutrient transport—to maintain plant health but also serve as primary 
indicators of plant stresses. Thus, various conventional technologies 
have been proposed to detect leaves’ physiological information for di-
agnosing plant stresses, including biomolecular analysis (15,  16), 
portable sensors (17–19), volatile organic compound (VOC) profil-
ing (20), computer vision (CV) (21), and spectroscopy (22, 23). Bio-
molecular analysis provides precise plant stress diagnosis by detecting 
molecular changes, yet it requires destructive tissue sampling and 
disrupts natural plant growth. Portable sensors (such as optical, 
moisture, and impedance sensors) enable convenient real-time and 
on-site stress diagnosis, while their rigid and bulky mechanism can 
damage plants. VOC profiling provides nondestructive diagnosis 
methods by analyzing VOCs emitted by plants but is highly suscep-
tible to environmental factors like temperature and wind. Among 
these, CV and spectroscopic methods are widely used due to their 
advantages of real-time, noninvasive, and convenient monitoring. 
Using trichromatic (24) and thermal (25) cameras to capture leaf 
images, CV methods can recognize symptoms associated with plant 
stresses, having become one of the mainstream noninvasive meth-
ods for plant health monitoring (26, 27). However, its recognition 
accuracy can be compromised by environmental factors such as ob-
ject obstruction, light fluctuations, and dust contamination. Spec-
troscopic methods offer a promising approach to addressing these 
challenges by analyzing spectral signatures of leaf pigments—such 
as chlorophylls, anthocyanins, and carotenes—which serve as essen-
tial biomarkers for plant stresses (28, 29). Nevertheless, bulk spec-
troscopic systems require mechanical fixation to maintain the leaf at 
the focal position, severely limiting their ability to continuously and 
effectively track plant health and stresses for the long term.

Recently, soft wearable sensors, known for their unique deform-
ability and biocompatibility, have been introduced for plant health 
monitoring. These sensors can be directly attached to leaves to contin-
uously collect diverse physiological information [e.g., water content 
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(30, 31), VOC emissions (32, 33), chlorophyll content (34), deforma-
tion (35, 36), and bioimpedance (37–40)], and living microclimates 
(e.g., temperature, humidity, and light intensity) (41). However, de-
spite notable advances in these soft sensors, a key challenge remains 
in establishing quantitative relationships between sensing informa-
tion and plant stresses. This challenge primarily arises from the lim-
ited quality of sensor data and insufficient data analysis capabilities. 
Although spectroscopic data provides valuable insights into plant 
health, on-plant wearable sensors that can in situ and continuously 
track plant spectral variations remain unexplored. Moreover, inte-
grating multimodal data from various complementary sensor types 
to effectively decouple the influences of multiple stresses has not been 
fully exploited. These limitations hinder precise and early diagnosis of 
plant stresses, delaying timely disease treatment and management.

Here, we presented a machine-learning (ML)–powered spectral-
dominant multimodal soft wearable system (MapS-Wear) for pre-
cise, long-term, and early-stage diagnosis of plant stresses (Fig. 1A 

and movie S1). MapS-Wear integrates in situ spectroscopic detec-
tion with temperature and humidity (T&H) measurements using a 
soft sensor patch, which can be conformally attached to the abaxial 
leaf surface. The multimodal data streams from the sensor patch are 
processed using a custom ML framework, enabling the precise diag-
nosis of various abiotic and biotic stresses with a high prediction 
accuracy of 99.2%. Multiple MapS-Wears can be deployed across 
different plant branches, forming a multisensor network for conve-
nient and precise health status monitoring. Notably, MapS-Wear 
can detect nutrient-deficient stress in plants over 10 days earlier 
than the conventional CV method before visible symptoms appear 
(Fig. 1B). This early diagnosis provides a sufficient window for time-
ly nutrient replenishment targeting health recovery. Furthermore, 
MapS-Wear can be practically applied for large-scale evaluation of 
health status across various grafted tomato varieties in greenhouses, 
assisting researchers in identifying compatible graft combinations to 
enhance crop quality and yield (Fig. 1C).
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Fig. 1. MapS-Wear for long-term and in-situ diagnosing plant stresses. (A) Illustration and photos of attaching the MapS-Wear to live tomato leaves for real-time plant 
stress diagnosis. (B) Illustration showing the MapS-Wear’s ability to diagnose nutrient deficiency symptoms at an early stage (10 days earlier than CV diagnosis), with 
prompts for timely nutrient replenishment to aid plant health recovery. (C) Practical application of the MapS-Wear for diagnosing the health status of grafted tomatoes 
and evaluating compatible graft combinations in greenhouses. Photo credit: Q.J., HUST.
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RESULTS
Soft sensor patch for the MapS-Wear
The soft sensor patch is a key part of the MapS-Wear for monitoring 
leaf physiological information (Fig. 2A). It includes two spectral sen-
sors and a T&H sensor assembled on soft and stretchable polydimethyl-
siloxane (PDMS) substrate, forming a sandwiched structure (fig. S1). 
To mitigate stress concentrations at the sensor sites during deforma-
tion (42, 43), sensors are encapsulated in modulus-gradient PDMS 
(MG-PDMS) (fig. S2). Liquid metal (LM) traces, with reliable conduc-
tivity even under 110% strain conditions, are printed on the substrate 
to connect sensors and external flat flexible cable for data transmis-
sion. Coated with an optimal adhesion layer, the soft sensor patch 
can conformally attach to the lower epidermis of the leaf, enabling 
the long-term and reusable collection of transmission spectra and 
surface T&H data (figs. S3 and S4, and movie S2).

When tomatoes suffer from nutrient deficiencies (N, K, and P) 
and mite attacks, the content and distribution of pigments in their 
leaves (chlorophyll, anthocyanins, and carotenoids) are affected (44), 
subsequently leading to visible symptom changes. As each pigment 
has a specific absorption spectrum, spectroscopic detection methods 
are widely used to analyze variations in leaves’ spectral features for 
diagnosing plant stresses (45–47). Unlike the commonly used com-
plex and rigid spectral probes to record large amounts of dense spec-
tral data, we opted for miniature spectral sensor components that 
can directly contact the leaf surface to capture its transmission spec-
trum in the visible region (415 to 680 nm) via eight channels.

While raw transmission signals are easily influenced by external 
lighting variations, spectral transmittance is inherently linked to the 
intrinsic spectral properties of leaf pigments, providing a more sta-
ble measurement. Therefore, we applied the soft sensor patch to 
leaves with five different health statuses (healthy; N, P, and K defi-
cient; and mite-attacked) to collect their spectral transmittance data 
(Fig. 2B). Each stress type causes distinct color changes in the leaves, 
which are related to variations in pigment content (Fig. 2C). Healthy 
leaves obtain the highest spectral peak at 550 nm (green band), cor-
responding to their high chlorophyll content. In contrast, N-deficient 
leaves appear yellow due to hindered chlorophyll synthesis, causing 
a shift in their spectral peak to 590 nm (yellow band). P-deficient 
leaves show a purple hue due to anthocyanin accumulation, which 
results in a high transmittance value at 680 nm (red band). Mite-
attacked leaves develop whitish speckles and exhibit reduced pig-
ment contents, as mites extract sap from the leaf mesophyll (48), 
resulting in a lower peak value at 550 nm compared to healthy 
leaves. Notably, K-deficient leaves show yellowing at the edges while 
retaining green near the veins, reflecting the spatial variation of 
chlorophyll levels across the leaf. To assess spatial distribution dif-
ferences of these pigments, two spectral sensors were designed to 
separately collect the spectral data from the center and edges of 
leaves (fig. S5). Therefore, the spectra for K-deficient leaves col-
lected by two spectral sensors exhibit notable differences, especially 
at 550 nm. The transmittance spectra collected by our soft sensor 
are generally consistent with those obtained from a benchmark 
spectrophotometer, validating the sampling accuracy of our sen-
sors (fig. S6). Therefore, the processed spectral transmittance data 
from leaves with different health statuses show notable differences, 
highlighting the potential to classify these stresses based on their 
spectral information.

Apart from spectra sensors, we also incorporate a T&H sensor 
offering complementary information to improve diagnosis quality 

by providing physiological insights into plant transpiration. During 
transpiration, stomata open to release water vapor, causing a micro-
environment of lower temperature and higher humidity near the leaf 
adaxial surface and thus further affecting the physiological process of 
leaves (49). The leaf ’s transpiration rate (Tr) is markedly influenced 
by stomata status and closely linked to plant health (Fig. 2D). Under 
drought stress, stomata are close to minimizing water loss, leading 
to a reduced Tr. Senescent leaves also exhibit decreased Tr due to 
decreased stomatal density (fig. S7). To continuously track plant Tr, 
we attached the T&H sensor to the backside of the leaf epidermis, 
ensuring a gap between the sensor and the leaf epidermis to prevent 
water vapor accumulation (fig. S8). The T&H information of the leaf 
and ambient environment was continuously monitored outdoors for 
24 hours (Fig. 2E). The T&H value of the leaf and ambient environ-
ment remained similar at night, while notable differences were ob-
served due to leaf transpiration during the day. Usually, the humidity 
difference (ΔH) between the leaf and ambient environment reached 
its maximum value at midday. Throughout a day of continuous re-
cording, the rigid chamber of a commercial transpiration meter 
caused damage to the tested leaf, whereas our soft sensor showed no 
observable effects on the leaf (fig. S9).

To further investigate the daily maximum humidity difference 
(ΔHmax) in response to plant drought and senescence stress, we used 
the T&H sensor to continuously record data for the long term. We 
subjected a tomato plant to cyclic drought conditions for 10 days 
(Fig. 2F and fig. S10). As the soil water content (SWC) gradually 
decreased from saturation to below 15%, the plant experienced 
drought stress, causing its branches to wilt. Despite this, the soft sen-
sor remained conformally attached to the leaf, indicating its strong 
adhesion characteristics (fig. S11). With the decrease of SWC, both 
ΔHmax and Tr decreased to low levels. After rewatering, ΔHmax and 
Tr increased to high values, and the plant morphology recovered to 
its normal state. We also tracked the variations in ΔHmax as the plant 
underwent senescence over 21 days (Fig. 2G and fig. S12). During 
this period, the leaf gradually turned yellow due to cell apoptosis 
and pigment degradation, leading to a decrease in both ΔHmax and 
Tr. Unlike drought stress, the decrease in ΔHmax during leaf senes-
cence cannot recover to its normal state. According to these results, 
the ΔHmax and the Tr present high correlations [coefficient of deter-
mination (R2) = 0.91], supporting the theoretical deduction (details 
in note S1 and fig. S13). Furthermore, the ΔHmax can serve as an 
additional indicator to identify plan drought and senescence sta-
tuses when it falls below 10% relative humidity (RH).

ML-powered diagnostic framework
Existing plant health diagnostic methods, such as CV, mainly focus 
on diagnosing leaves until distinct symptoms appear, failing to pre-
dict the gradual progression of stresses (21). Moreover, these meth-
ods require large datasets for training models, posing challenges for 
long-term plant cultivation. To address these limitations, we build 
up an ML-powered diagnostic framework that can continuously di-
agnose plant stresses with high accuracy while reducing the need for 
extensive training datasets (Fig. 3A).

The ML-powered diagnostic framework consists of two compo-
nents: a T&H discriminator (THD) and a spectral diagnostic model 
(SDM) (note S2 and fig. S14). We observed that leaves under drought 
and senescent conditions cause disturbances in their spectral trans-
mittance due to changes in leaf thickness and symptoms. These results 
may lead to misdiagnosis during spectral analysis, while integrating 
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Fig. 2. Working principle and characterization of the soft sensor patch. (A) Schematic illustrating the soft sensor patch attached to the abaxial surface of a tomato leaf 
for detecting T&H and transmission spectral information. Top left: Photo of the soft sensor patch attached to the abaxial leaf surface. Bottom left: Exploded structural view 
of the soft sensor patch. Schematics of leaf physiological information detection using the spectral sensor (top right) and the T&H sensor (bottom right). (B) Spectral trans-
mittance of various leaf statuses, with data collected from 100 leaves per status. SDs are represented by both color shading and error bars. (C) Variations in leaf pigment 
content under different stress conditions. (D) Analysis of stomata density and Tr among healthy, drought, and senescent leaves. (E) Continuous monitoring of ambient and 
leaf surface T&H fluctuations over 24 hours. RH, relative humidity. ΔH, the difference of leaf surface and ambient humidity. (F) Response of ΔHmax and Tr to SWC changes 
over a 10-day drought cycle. (G) Variations in ΔHmax and Tr of a leaf undergoing gradual senescence over 21 days. Photo credit: Q.J., HUST.
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T&H data helps mitigate such an issue (fig. S15). For example, THD 
can help correct potential misdiagnoses when SDM and CV meth-
ods are both influenced by leaf senescence stress (fig. S16). Given 
their distinct strengths, we integrated THD and SDM to fully exploit 
their complementary diagnostic capabilities. The THD first differ-
entiates heat, drought, and senescence stress, filtering out possible 
disturbances to the transmission spectral data. After excluding these 
confounding factors, SDM is then used to precisely identify nutrient 
deficiencies (N, K, and P) and mite attacks (movie S3).

After data processing, the processed spectral transmittance cor-
responding to various leaf health statuses can be clearly distin-
guished using kernel principal component analysis (kPCA) (Fig. 3B 
and fig. S17). The three-dimensional (3D) cluster results show that 
different stress classes are well-separated, with three principal com-
ponents (PC1, PC2, and PC3) accounting for 97.5% of the total ex-
plained variance. Therefore, the kPCA results indicate effective data 
cleaning, ensuring high-quality input for subsequent ML model 
training. To maximize the extraction of spectral information prop-
erties, we implemented an ensemble learning strategy. Moreover, 
time-series spectral data, collected as the gradual development of 
unhealthy symptoms in leaves, was incorporated into the model 
training process to enhance the generalization performance of the 
SDM (fig.  S18). Thus, this approach enables SDM to output the 
probability of stress progression in plants by analyzing subtle shifts 
in spectral data over time (note S3 and fig. S19).

To evaluate the contribution of spectral information during the 
diagnosis, we assessed the feature importance of each wavelength 

using Shapley additive explanation (SHAP), as shown in Fig. 3C. The 
SHAP analysis reveals that 555, 590, and 680 nm wavelengths strongly 
influence stress classifications. The result suggests that the changes 
in stress symptoms are predominantly reflected in the color varia-
tions associated with these specific wavelengths, consistent with the 
previous spectral analysis of nutrient deficiencies and mite attacks. 
The output confusion matrix demonstrated that the SDM achieved 
the highest classification accuracy of 99.2%, outperforming other typ-
ical models (Fig. 3D and fig. S20). Compared to other related works on 
tomato plant stress diagnosis in terms of sample size and accuracy 
(50–63), our work offers a unique advantage by achieving high diag-
nostic accuracy of more than 99% with a small training dataset of 
fewer than 500 leaves (Fig. 3E and table S1). As discussed in the previ-
ous section, such a high efficacy can be attributed to the in situ spectral 
detection, which provides high-quality and direct stress-related fea-
tures, thereby reducing large training dataset requirements and en-
hancing model performance.

Briefly, our ML-powered diagnostic framework well exploits 
complementary multimodal information from the T&H and spec-
tral sensors, offering a convenient and highly precise platform to 
diagnose various plant stresses. Specifically, THD is effective in 
identifying thermal and moisture-related stresses (e.g., heat, drought, 
and senescence), while SDM excels in detecting nutrient deficien-
cies and mite attacks. By integrating THD and SDM, the diagnostic 
framework provides a more comprehensive and accurate assess-
ment of plant stresses. Moreover, the framework demonstrates sta-
ble diagnosis under various disturbances (e.g., wind exposure, water 
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spray, and heat conditions), simulating commonly seen outdoor en-
vironments (fig. S21).

MapS-Wear in plant stresses diagnosis and further extension
Having demonstrated the ability of our MapS-Wear for in situ, long-
term, and convenient diagnosis of plant stresses, we applied the sys-
tem to establish a sensing network, enable early-stage diagnosis of 
nutrient deficiencies, and conduct high-throughput screening of 
grafted tomatoes in greenhouses. These demonstrations exhibit 
MapS-Wear’s potential from laboratory validation to practical agri-
cultural implementation.

We deployed a sensing network on an individual plant to inves-
tigate how different plant parts respond differently to stresses, such 
as N-deficient stress in this study. By attaching three soft sensor 
patches to various branches of a tomato plant (from lower to upper 
leaves), we established a multisensor network to monitor the plant’s 
health status over 31 days (Fig. 4A). The soft sensor patches can be 
customized to appropriate sizes, facilitating adaptive attachment 
to various leaf shapes (fig. S22). To induce N-deficient stress, we cul-
tivated the plant in an N-deficient solution. The probabilities of N 
deficiency for each leaf, denoted as P(N), were output by MapS-
Wear (Fig.  4B). On the 13th day, the P(N) for the lower leaf first 
reached the diagnostic threshold, where it had the highest value 
among all classifiers, confirming the diagnosis of N-deficient stress. 
As the plant continued to endure N-deficient stress, the P(N) values 
for both the lower and middle leaves progressively increased, cor-
responding to increasingly obvious visual symptoms (sequential 
photos in fig. S23). On the 21st day, the P(N) for the lower leaf ex-
ceeded 60%, accompanied by distinct yellowing symptoms. To pre-
vent further deterioration of leaves, we replenished the N nutrient in 
the tomato plant. However, the lower and middle leaves showed ir-
reversible yellowing to senescence, as diagnosed by MapS-Wear 
(fig. S24). In contrast, the upper leaf remained healthy after N sup-
plementation. During the long-term experiment, we also recorded 
these test leaves’ length variation to investigate the soft sensor patch’s 
impact on natural growth (fig. S25). The results show that the lower 
leaf and its side leaves maintained stable length, indicating that 
these leaves were already matured. In contrast, the middle and up-
per leaves exhibited gradual length increases as they continued 
growing, with their side leaves showing similar growth rates. These 
findings indicate that our soft sensor patch remains stable and has 
negligible on leaves’ natural growth. Moreover, plant height varia-
tion was recorded, revealing a slowed growth rate under the N-
deficient condition and rapid recovery after N supplementation 
(fig.  S26). By establishing a comprehensive sensing network for 
convenient and simultaneous monitoring of plant health, this study 
revealed that the lower leaves are more sensitive to N-deficient 
stress, consistent with plant physiology (44). Moreover, this finding 
can be extended to other nutrient deficiencies (K and P), suggesting 
that MapS-Wear attached to the lower leaves would enhance its di-
agnostic sensitivity.

Furthermore, we demonstrate MapS-Wear’s capability for early-
stage diagnosis and provide efficient windows for the timely treat-
ment of nutrient deficiencies. Soft sensor patches were attached to 
three leaves on the second-from-bottom branch of each plant to 
monitor their health status under K-deficient stress (Fig.  4C and 
fig. S27). After these plants experienced K-deficient stress, the prob-
abilities of K deficiency for each leaf, denoted as P(K), were diag-
nosed by MapS-Wear (fig. S28). The CV method was also applied to 

monitor the health variation of these leaves for comparison. During 
the experiment, a dynamic diagnostic threshold—where P(K) peaked 
relative to other classifiers—was used to determine K-deficient stress. 
For Leaf l, our system successfully diagnosed its K-deficient stress on 
the 11th day. Subsequently, we immediately replenished the K nutri-
ent to prevent further leaf deterioration. Because of the K replenish-
ment at an early stage, Leaf 1 gradually recovered to a healthy status 
(photos in fig. S29A). In contrast, the CV method failed to detect 
subtle symptom changes in Leaf 1 throughout the entire experiment 
(fig. S30). For Leaves 2 and 3, we delayed the K replenishment until 
the P(K) exceeded 60 and 90%, respectively. Notably, MapS-Wear 
provided an earlier diagnosis by more than 10 days compared to the 
CV method, highlighting the superior performance of our spectral-
based detection approach over the conventional vision-based method. 
Despite the subsequent K supplementation, these two leaves under-
went irreversible deterioration, ultimately exhibiting severe K de-
ficiency symptoms and eventually turning senescent, which was 
diagnosed by MapS-Wear (figs. S28 and S29, B and C). Consequently, 
the P(K) values for Leaves 2 and 3 presented inaccuracies that were 
influenced by their senescent states. After the 31-day experiment, 
these three plants exhibited different growth phenotypes. For instance, 
the plant with Leaf 1 grew lushly because of the timely treatment of 
K deficiency, whereas plants with Leaves 2 and 3 showed sparse leaves 
due to the delayed K replenishment (photos in fig. S29D). Therefore, 
MapS-Wear provides researchers with a sufficient time window for 
early-stage diagnosis and thus to make an active intervention, such as 
timely nutrient-deficiency treatment, which helps plants to recover to 
a healthy status.

Last, we further extended MapS-Wear to practical agriculture 
settings, in greenhouses, for large-scale evaluation of the compati-
bility of grafted tomatoes. Tomato grafting is widely applied in agri-
culture to enhance disease resistance (64), improve stress tolerance 
(65), and boost crop yields (66). In grafted tomatoes, nutrients are 
transferred from the rootstock to the scion through water transport 
(Fig.  4D). However, graft incompatibility limits nutrient trans-
port, resulting in nutrient deficiencies in these plants (67). Hence, 
diagnosing the health status of these grafted tomatoes can guide 
evaluating the compatibility of various grafting combinations. Based 
on this, we deployed MapS-Wear in greenhouses for on-site diag-
nosis of tomato graft compatibility (Fig. 4E and movie S4). Compared 
to commercial sap analyzer to measure plant nutrient contents, our 
system offers a noninvasive, portable, and real-time diagnostic ap-
proach that reduces the operation time from hours to seconds 
(Fig. 4F). In this study, a single type of tomato scion grafted onto 
different varieties of rootstocks to form 50 types of graft combina-
tions. Using MapS-Wear, we diagnosed the health status of these 
grafted tomatoes to assess their graft compatibility (Fig. 4G). The 
growth status of different graft combinations was mapped, offer-
ing researchers valuable insights to identify compatible combi-
nations within healthy graft groups (Fig. 4H). Nutrient contents 
of these tomatoes were also measured through sap analysis, serv-
ing as a benchmark for nutritional assessment. Comparing the 
results from MapS-Wear with those from sap analysis, MapS-Wear 
achieved a high evaluation accuracy of 88% (more details in Mate-
rials and Methods and table S2). The incorrect diagnoses may be 
attributed to plants experiencing other stresses not included in 
our current datasets but exhibiting similar symptoms, suggest-
ing that further optimization is necessary in the future. Nevertheless, 

D
ow

nloaded from
 https://w

w
w

.science.org on June 27, 2025



Jiang et al., Sci. Adv. 11, eadw7279 (2025)     27 June 2025

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

7 of 12

MapS-Wear diagnosed 
K replenishment

12 days
earlier

MapS-Wear diagnosed

Leaf 1

Until P(K) > 90%

CV diagnosed

K-deficient stress
Day 1

K-deficient stress

Health recovery

Senescence

K

K

P
(K
) b

y 
M
ap

S
-W

ea
r (
%
)

P
(K
) b

y 
M
ap

S
-W

ea
r (
%
)

-1
K
 c
on

te
nt
 (
g 
kg

)
-1

K
 c
on

te
nt
 (
g 
kg

)

K replenishment

Leaf 3

Day 31C

Time (day)

Time (day)

Diagnostic threshold

P(K) > 90%

P(N) > 60%

0

20

40

60

80

100

0

20

40

60

80

100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

4.0 

4.0

3.5

3.5

3.0 

3.0 

2.5

2.5

2.0 

2.0 

1.5

1.5

1.0

1.0

0.5

0.5

Symptom change

Symptom change

K

K

K

12 days earlier diagnosis

K contentCV
diagnosed

MapS-Wear
diagnosed K replenishment

Diagnostic threshold

Leaf
senescence

B

P
(N

) b
y 
M
ap

S
-W

ea
r (
%
)

- 1
N
 c
on

te
nt
 (
g 
kg

)

Upper leaf Middle leaf Lower leaf N content

MapS-Wear
diagnosed

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31
0

20

40

60

80

100

0

0.1

0.2

0.3

0.4

Diagnostic threshold

#27#26 #40#28 #41#29 #42#30 #43#31 #44#32 #45#33 #46#34 #47#35 #48#36 #49#37 #50#38

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 #24 #25

#39

H

0

20

40

60

80

100

Compatible
combination

P
ro
ba

bi
lit
y 
(%

)

Health

Health

P_de

P_de

N_de

N_de

K_de

Sap 
analysis

MMaappSS--WWeeaarr
ddiiaaggnnoossiiss

MMaappSS--WWeeaarr
ddiiaaggnnoossiiss

K_de

#50

#1 #2 #50

#1
F G

D E

0
Probability (%)

100

NO

NO

K

K

PO

PO

3-

3-

-

-

+

+

4

4

3

3

Rootstock

Different  rootstocks

Rootstock

Rootstock

Scion

Scion

Grafted tomato

Compatible
combination

Incompatible
combination

Health

Diagnostic results

K 
deficiency

Incompatibility

Compatibility Health

Nutrient
deficiencies 

Scion

Same scion

Sap analyzer

MapS-Wear

Graft

Health

Health

P_de

P_de

N_de

N_de

K_de

K_de

MapS-Wear

Soft sensor patch

410

510

610

710

Sap
Analyzer

Sap
Analyzer

MapS-WearMapS-Wear

3
Vo

lu
m
e 
(m

m
)

M
ea
su
re
m
en
t t
im
e 
(s
)

410

310
10 mm

10 cm

210

10

~1440
times

~9000
times

A

Scion

Rootstock5 cm

N replenishment

N

Soft sensor patch

Grafted tomatoes in greenhouses
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MapS-Wear demonstrates a considerable potential for practical ap-
plication in agricultural management and production.

DISCUSSION
In this paper, we propose a MapS-Wear that can be conformally at-
tached to the abaxial leaf surface, enabling in situ, long-term, and 
early-stage diagnosis of plant stresses. The system introduces a unique 
on-plant spectral detection approach to continuously track the varia-
tion of leaf transmission spectra, which can be direct indicators to 
reflect stresses from nutrient deficiencies and mite attacks. Simul-
taneously, T&H information of leaves is also recorded to assess 
plant transpiration, helping to distinguish plant status under heat, 
drought, and senescence conditions. By well exploiting these multi-
modal data, an ML-powered diagnostic framework was built to pre-
cisely diagnose various abiotic and biotic plant stresses throughout 
their gradual progression.

Further, our MapS-Wear has been demonstrated for practical 
tomato stress diagnosis, extending from laboratory validation to 
agricultural implementation. By incorporating multiple MapS-
Wears into a sensing network, the system enables convenient and 
accurate stress diagnosis across individual plants from the lower to 
the upper leaves. Compared to existing studies on plant soft wear-
able sensors (32–35, 37, 41), our MapS-Wear not only achieves the 
earliest visual-based detection time for plant stresses but also es-
tablishes an integrated system for physiology information detec-
tion and real-time stress diagnosis (fig.  S31 and table  S3). The 
system achieved early diagnosis of nutrient-deficient stress over 
10 days earlier than conventional CV methods, allowing a suffi-
cient window for timely intervention to support the plant’s healthy 
recovery. Furthermore, being a convenient and highly precise di-
agnostic tool, MapS-Wear has been effectively applied for large-
scale and high-throughput screening of grafted tomato varieties in 
greenhouses, assisting researchers in identifying compatible graft 
combinations to enhance tomato quality and yield. It hints that our 
approach can be adapted for other plants to enable precise cultiva-
tion and intelligent management, offering a potential tool to ad-
dress the global nutrition crisis.

Future studies will focus on enhancing the reliability and perfor-
mance of MapS-Wear and expanding its application to other tomato 
varieties and more plant species. One potential improvement is inte-
grating light-emitting diodes (LEDs) as active incident light sources 
to minimize interference from ambient light and enable automatic 
measurement at night. The MG-PDMS substrate could also be re-
placed with a lighter, softer, and more breathable material (e.g., 
stretchy gauze or nanofibers) to further reduce the patch’s weight 
and improve breathability. Notably, adapting MapS-Wear for differ-
ent plant species (e.g., corn, potato, and grape) will require consider-
ation of variations in leaf color, morphology, thickness, and surface 
texture, which may necessitate adjustments in sensor placement and 
calibration. For example, differences in leaf thickness affect spectral 
transmission, necessitating specific spectral calibrations. Expanding 
the spectral library to include more plant varieties is also necessary 
to improve the generalization of the ML diagnostic framework. Si-
multaneously, the ML framework could be further optimized by in-
corporating advanced algorithms (e.g., large language models) to 
enhance its data analysis capabilities. Moreover, extending the spec-
tral range (e.g., near-infrared and ultraviolet) may be needed to cap-
ture additional physiological information and enhance diagnostic 

performance. With these modifications, MapS-Wear will further im-
prove its robustness and practical application in agricultural settings.

MATERIALS AND METHODS
Design of the MapS-Wear
The MapS-Wear comprises three subsystems, including a soft sen-
sor patch with T&H and spectral sensors, a data sampling module 
for collecting and wireless transmitting sensing data and an ML-
powered diagnostic framework for diagnosing plant stresses (details 
of design in fig. S32). The soft sensor patch integrates with a flexible 
printed circuit board (FPCB)–based data sampling module to form 
a lightweight (~4 g) plant wearable device (fig. S33). To ensure high 
stability under large strain, the MapS-Wear incorporates an MG-
PDMS structure (fig. S34), with the detailed fabrication process of 
the soft sensor patch shown in fig. S35. Moreover, the PDMS sub-
strate exhibits excellent optical transparency in visible light (~90% 
transmittance), high gas permeability (~2000, ~1000, and ~2100 μm2/s 
for O₂, CO₂, and water vapor, respectively), biocompatible, and low 
thermal conductivity (~0.27 W/m·K), making it well-suited for fab-
ricating soft sensor patches for plants (68). The T&H sensor (SHT41, 
Sensirion) contains electrical sensing elements for high-precision 
measurement of temperature (±0.1°C) and RH (±1% RH). The 
spectral sensor (AS7341, ams-OSRAM) uses photodetectors to 
convert incident light at specific wavelengths into electrical signals, 
programmed to use eight channels to capture the visible spectrum 
(415 to 680 nm). This configuration aims to eliminate interference 
from near-infrared light, which is abundant in natural sunlight. 
Both these two sensors can convert physical signals into digital out-
put and communication via the Inter-Integrated Circuit (I2C) pro-
tocol with the bluetooth low-energy microcontroller (NRF52840, 
Nordic). LM traces, which are biocompatible with plants (39, 69), 
were printed to connect the sensors for data transmission and fully 
encapsulated within the PDMS substrate. The hardware circuits 
are illustrated in fig. S36. The overall hardware cost of the MapS-
Wear is approximately $30 for the current proving stage (details in 
table S4), and it has a high potential for substantial reduction with 
large-scale production.

Cultivation of tomato plants
Four common tomato varieties were selected as training samples, in-
cluding red cherry types (Mei Ying 2# and Busan 88) and red salad 
types (Zhong Shu 4# and China 72–69). These varieties are biologi-
cally close relatives and exhibit slight differences in leaf color and 
morphology, making them suitable for testing and validating the 
MapS-Wear’s diagnostic capabilities across different tomato varieties. 
These plants were cultivated indoors using hydroponic systems under 
plant growth lights with 16-hour light and 8-hour dark cycles (fig. S37). 
Once the plants reached the vegetative growth stage (~30 days after 
germination), they were subjected to various abiotic and biotic stresses 
accordingly. To regulate the nutritional state of tomato plants, nutri-
ent solutions were prepared on the basis of Hoagland’s formulation, 
including a full-nutrient solution and solutions deficient in specific 
nutrients (N, K, and P). Also, some plant groups were subjected to 
natural infestations by red spider mites (Tetranychus urticae).

Details of plant transpiration monitoring
The leaf ’s transpiration rate was measured using a commercial plant 
transpiration rate meter (GH1, Heng Mei) by placing the tested leaf 
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inside the chamber (fig. S9). The meter was programmed to take mea-
surements for 5 min at 1-hour intervals. The soft sensor patch was also 
attached to the leaf surface to continuously record the leaf and environ-
ment T&H information. Meanwhile, the SWC was monitored using a 
soil moisture probe (SN-3000-TR, PRSENS) inserted into the soil.

Incident light setup for data collection
To ensure stable and consistent spectral data collection in the MapS-
Wear system, a uniform white light source (Mi Jia 1S, Xiaomi, 4500 lux, 
5000 K color temperature) was used as a controlled illumination 
source (fig. S38). The incident light was positioned ~30 cm above 
the tested leaf to maintain consistent light exposure. Moreover, a 
blackout fabric hood was incorporated to effectively block or reduce 
external ambient light interference, ensuring reliable spectral mea-
surements. This setup minimizes variations caused by environmen-
tal lighting and allows the MapS-Wear system to operate effectively 
under moderate sunlight conditions (below 15,000 lux) (fig. S39).

Collection of leaf transmission spectral datasets
Leaf samples for ML framework training were collected every 5 days 
as tomato plants experienced stress. Each collected leaf was placed 
under the uniform white light provided by a desk lamp (Mijia 1s, 
Xiaomi; fig. S40). The soft sensor patch was attached to the leaf sur-
face, and its two spectral sensors collected transmission spectra 
( I1, I2 ) from different locations on the leaf. The ambient incident 
light ( Ienv ) was also captured using an environmental spectral sen-
sor mounted on the FPCB. For each leaf, spectral data from three to 
five positions of the tested leaf were collected by repeating the above 
process. Five hundred leaf samples (100 leaves per stress type) in 
total were gathered to create a comprehensive training dataset that 
includes 2742 spectral sequences.

The spectral transmittance ( Ts ) was proposed for further data 
analysis, which can be defined as,

where iϵ[1, 2] , representing the datasets collected by two spectral 
sensors. As each spectral sensor covers a broad spectral range from 
415 to 680 nm, divided into eight channels, the spectral transmit-
tance sets for different wavelength channels can be expressed as

where s
x
 refers to spectral transmittance at wavelength x nm. Then, 

T
s1and T

s2 were normalized as follows

where the T
s
 represents the normalized spectral transmittance and 

m ∈ [415, …,680].
Further data preprocessing included outlier detection and han-

dling using the interquartile range (IQR) method to ensure data 
consistency. Moreover, kPCA was applied to unsupervised evaluate 
the impact of data preprocessing on feature quality. By using a ker-
nel function, kPCA projects the data into three PCs, enabling visu-
alization in a 3D feature space and enhancing the separability of 

nonlinearly distributed clusters. The radial basis function kernel 
with γ = 0.1 was used to achieve well-separated clusters. In addition, 
the explained variance ratios for each PC were calculated to quan-
tify their contribution to cluster separation.

Design of the ML-powered diagnostic framework
The ML-powered diagnostic framework composes the THD and 
SDM to process multimodal sensor information (details in note S2).

The THD analyzes T&H data to classify leaf status under heat, 
drought, or senescence conditions using logical thresholds. Heat 
stress is identified when the ambient or leaf surrounding tempera-
ture exceeds 35°C, ensuring timely intervention to prevent adverse 
effects on tomato growth (9). When the ΔHmax is lower than 10% 
RH, the THD initially diagnoses the plant as experiencing drought 
stress and remind researchers to water the plant. Subsequently, if the 
ΔHmax remains lower than 10% RH; on the following day, the THD 
diagnoses the tested leaf as undergoing a senescent process.

The training process of the SDM comprises two main phases, in-
cluding initial training and model optimization (fig. S18), as follows:

1) Initial training. This phase focuses on selecting appropriate 
base estimators for spectral data classification and establishing pre-
trained model parameters. We used data from five leaf health cate-
gories (health; N, K, P deficiencies; and mite attacks) with distinct 
symptoms as our pretraining dataset. Then, multiple base estimators 
were tested on the labeled spectral data, and seven were identified as 
suitable for further optimization: logistic regression (LR), extra trees 
(ET), AdaBoost, support vector classifier (SVC), random forest 
(RF), gradient boost (GB), and decision tree (DT).

2) Model optimization. To enable the model to continuously 
analyze stress’s gradual progression, we augmented the dataset with 
time-sequenced spectral data reflecting gradual symptom develop-
ment. With such an enriched dataset, an ensemble learning model 
was constructed by integrating the above suitable base estimators to 
enhance its capacity to diagnose plant health status during its grad-
ual changes. A grid search was conducted to optimize the parame-
ters and assign appropriate weights to the base estimators.

Last, THD and SDM were integrated into a unified ML frame-
work deployed on a cloud server (Alibaba cloud, Alibaba) for real-
time diagnosis. In practical application, the T&H and spectral data 
of the leaf and its surrounding environment are transmitted into the 
ML framework via a network. Then, the ML framework generates 
classification probabilities and provides an accurate diagnosis of 
plant health status (details in note S3 and table S5). Compared with 
other deep-learning methods, the ML framework demonstrates ro-
bustness, generalization, and greater suitability for processing tabu-
lar spectral data (note S4 and table S6).

As shown in fig. S32, the overall architecture of the MapS-Wear 
involves three main steps: (i) the data sampling module transmits 
sensing data to a mobile phone via Bluetooth, (ii) the mobile phone 
uploads the data to a cloud server, and (iii) the ML framework on the 
server processes the data and returns the diagnostic result, which is 
displayed through the mobile phone’s WeChat Mini Program inter-
face. Because the sensor data size is very small (~20 bytes), the Blue-
tooth and network transmission times are nearly negligible. Moreover, 
the ML-powered diagnostic framework is lightweight and requires 
minimal computational resources. Therefore, the ML framework pro-
cesses each sample in ~0.05 ms, enabling MapS-Wear to deliver real-
time diagnostics for practical applications.

Ts(i) = Ii ∕ Ienv

Tsx (i),(i=1,2)
=
[

s415, s445, s480, s515, s550, s590, s630, s680

]

T
si, (i=1,2) =

s(m)

8
∑

t=0

s(t)
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Long-term nutrient deficiency diagnosis experiments
During the long-term nitrogen (N) and potassium (K) deficiency 
experiments, the plants were cultivated in an indoor environment 
to eliminate interference from other stress factors, such as heat, 
drought, and insect infestations. In addition, photos and sensing 
data of these tested leaves were recorded daily at 10:00 a.m. To pre-
cisely track changes in nutrient content, sap analysis was conducted 
using a plant nutrient analyzer (YT-TR-ZY, YunTang) by sampling 
approximately two to three fresh leaves from the middle of the plant 
every other day (detailed process in fig. S41). After deciding to re-
plenish the deficient nutrient (N or K), the corresponding plant was 
transferred to a full-nutrient solution.

For the N deficiency experiment (Fig. 4A), red cherry toma-
toes (Mei Ying 2#, China Vegetable Seed Technology Co., Ltd) at the 
flowering stage (60 days after germination) were chosen and culti-
vated in a hydroponic system. Three soft sensor patches were at-
tached to healthy leaves at different heights of the plant (upper, 
middle, and lower leaves). The plant was then subjected to an N-
deficient solution.

For the K deficiency experiment (Fig. 4D), three red salad toma-
toes (Zhong Shu 4#, China Vegetable Seed Technology Co., Ltd) with 
similar growth statuses (60 days after germination) were selected and 
cultivated in a hydroponic system. For a controlled setup, three soft 
sensor patches were separately attached to healthy leaves on the same 
second-from-the-bottom branch of each plant. Subsequently, these 
plants were simultaneously placed in a K-deficient solution.

In addition, a ResNet-based CV framework was developed and 
trained to diagnose plant stresses using images of tested leaves 
(fig. S42). After optimization, the pretrained ResNet-152–based 
framework showed the highest prediction accuracy (97.8%) com-
pared to other models (fig. S43).

Graft compatibility diagnosis in greenhouses
The grafted tomato seedlings were prepared by grafting the same 
scion variety (type: 72-69 tomato, China) onto different tomato 
rootstock varieties (fig. S44). Particularly, the tomato scion species 
was included in our training dataset to enhance diagnostic accuracy. 
Therefore, the tomato leaves remained consistent in type, enabling a 
systematic and controlled screening of grafting compatibility. More-
over, to prevent the risk of infection, all grafting procedures were 
conducted in a sterile laboratory environment. The grafted seedlings 
were then cultivated in greenhouses for 3 months before graft com-
patibility screening. During this period, any seedlings exhibiting 
abnormal growth due to infection or severe mechanical damage 
were excluded from the experiment. Therefore, the tomato seedlings 
used in the experiment were free from infections or mechanical 
damage, allowing for a focused analysis of malnutrition caused by 
grafting incompatibility.

Initially, a small number of grafted tomatoes (26 groups) was 
randomly sampled to represent the overall health levels of the toma-
toes in greenhouses through sap analysis. These grafted tomatoes 
were categorized into four health levels based on their average nutri-
ent content (N, K, and P) and visible symptoms. Thus, the nutrient 
content of the third health level served as a benchmark for subse-
quent experiments (fig. S45).

Subsequently, 50 groups of tomato graft combinations were se-
lected for health status diagnosis (including healthy and N, K, and P 
deficiencies) and further evaluation of graft compatibility. For each 

grafted group, three plants were diagnosed using MapS-Wears to 
comprehensively assess their health status. These plants’ health sta-
tuses were also evaluated by comparing their actual nutrient content 
with established threshold benchmarks. Last, comparing diagnostic 
results from MapS-Wear with sap analysis, compatible grafted plant 
groups can be identified as healthy (details in table S2).

Spectral properties of leaves
The reflectance and transmittance spectra of leaves in various health 
statuses (healthy; N, P, and K deficient; and mite-attacked) were mea-
sured by a spectrophotometer (SolidSpec-3700, SHIMADZU) at the 
wavelength range from 300 to 1000 nm. The pigment contents of 
leaves in different health statuses (Fig. 2C) were calculated by leaf 
reflectance spectra (details in note S5 and fig. S46).
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