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Tailoring Stress–Strain Curves of Flexible Snapping
Mechanical Metamaterial for On-Demand Mechanical
Responses via Data-Driven Inverse Design

Zhiping Chai, Zisheng Zong, Haochen Yong, Xingxing Ke, Jiaqi Zhu, Han Ding,
Chuan Fei Guo, and Zhigang Wu*

By incorporating soft materials into the architecture, flexible mechanical
metamaterials enable promising applications, e.g., energy modulation,
and shape morphing, with a well-controllable mechanical response, but suffer
from spatial and temporal programmability towards higher-level mechanical
intelligence. One feasible solution is to introduce snapping structures and then
tune their responses by accurately tailoring the stress–strain curves. However,
owing to the strongly coupled nonlinearity of structural deformation and
material constitutive model, it is difficult to deduce their stress–strain curves
using conventional ways. Here, a machine learning pipeline is trained with the
finite element analysis data that considers those strongly coupled nonlinearities
to accurately tailor the stress–strain curves of snapping metamaterialfor
on-demand mechanical response with an accuracy of 97.41%, conforming
well to experiment. Utilizing the established approach, the energy absorption
efficiency of the snapping-metamaterial-based device can be tuned within the
accessible range to realize different rebound heights of a falling ball, and soft
actuators can be spatially and temporally programmed to achieve synchronous
and sequential actuation with a single energy input. Purely relying on
structure designs, the accurately tailored metamaterials increase the devices’
tunability/programmability. Such an approach can potentially extend to similar
nonlinear scenarios towards predictable or intelligent mechanical responses.

1. Introduction

Due to the introduction of delicately engineered building cells
into the material, mechanical metamaterials exhibit unprece-
dented mechanical properties that those of natural materials
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are not comparable to, such as negative
Poison’s ratio,[1] negative compressibility,[2]

high elastic stiffness,[3] and high strength-
to-density ratio.[4] To enrich the func-
tionality of mechanical metamaterials
beyond these fixed mechanical proper-
ties, soft-material-based structures and
connections can be introduced into the
architecture.[5–9] These so-called flexible
mechanical metamaterials exhibit excellent
deformability and have endowed attractive
applications concerned with structural
deformation and transformation, such
as adaptive surface conforming,[10] me-
chanical energy modulation,[11,12] and
programmable shape morphing.[13–15]

However, merely deformable structures
are hard to be spatially and temporally
programmed to form systems with highly
precise and programmable mechanical
responses toward high-level intelligence,
such as mechanical signal transformation
and computation,[16–19] reconfigurable
mechanical properties,[20,21] and sequen-
tial behaviors.[22–24] One of the attractive
solutions is to introduce snapping struc-
tures that can modulate the absorption

and release of mechanical energy through their snap-through
process.[25] By quantifying the relations between snapping struc-
tures and their corresponding mechanical responses, spatial
and temporal behaviors of mechanical metamaterials can then
be programmed for various specific applications that modulate
mechanical signals. Quantifying the mechanical responses re-
lies on an accurate depiction of the mechanical properties, and
the most frequently adopted approach is to mathematically de-
scribe its stress–strain curve. As the stress–strain curve of struc-
tures contains abundant mechanical information, such as strain-
dependent stiffness, required stress to achieve specific strain, and
stored energy by deformed structures, the spatial and temporal
mechanical responses can then be programmed on demand by
tailoring the stress–strain curve.

Originating from the highly deformable and shape-
transformable building cells, the behavior of snapping me-
chanical metamaterials is intrinsically nonlinear.[5] What is
more, the complexity of such a nonlinear behavior increases
with the introduction of more snapping structures, making it
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Figure 1. Tailoring the stress–strain curve of snapping mechanical metamaterials for on-demand mechanical responses via data-driven inverse design.
a) Schematic of the FEA-based ML for the generation of snapping mechanical metamaterials with desired stress–strain curve. The overall ML pipeline
consists of boundary determination, an inverse network, and a forward network. The boundary determination section describes the decision boundary
of different mechanical response phases. The FEA results are extracted for training the neural networks. Eight structural parameters are determined to
define the architecture of snapping mechanical metamaterials. b) Comparison of the stress–strain curves of the simulation, experiment, and predicted
one. Taking a two-by-two snapping mechanical metamaterial with w = 0.3 mm, l = 2.0 mm, and 𝛼 = 45° for example, the maximum nominal strain of
the designed structure is around 40%. c) Demonstration of spatial and temporal motion programming with our approach.

harder to accurately depict the stress–strain curve with multiple
snapping structures. Worse, due to the nonideal architecture
and constraints (the structures that are hard to be simplified as
hinges and beams, etc., of which boundary conditions are not
fully constrained), composing soft materials with significant
hyperelasticity, viscosity, and plasticity (such as polyurethanes
and silicones) can sometimes undergo large and out-of-plane
strain.[26–28] Therefore, highly nonlinear constitutive models of
soft materials should also be seriously considered. Such strongly
coupled nonlinear deformation and nonlinear constitutive
model contribute to the difficulty of theoretically describing the
stress–strain curve of snapping mechanical metamaterials.

Traditionally, a straightforward approach to describing the
snapping behavior is to accurately derive the relations between
the structural parameters and the corresponding mechanical re-
sponses by analytical modeling. Assuming linear elasticity and
small local strain, various analytical models are deduced previ-
ously and widely adopted in investigating linear material consti-
tutive model-based structures,[20,25,29] where nonlinear mechan-
ical deformation can be accurately captured. However, it may
encounter difficulties in analyzing large-strain structures with
nonideal architecture and nonlinear constitutive models. Simpli-
fied spring models are thus utilized to understand the intrinsic
physics of large-strain snapping structures,[30,31] while they suffer
from the design accuracy of stress–strain curves. By fitting mul-
tilayer nonlinear mathematical mapping between the input and

output data, machine learning (ML) is an emerging technique
that is capable of tackling thorny coupling nonlinear problems
in a computationally inexpensive way.[32] For instance, the tuning
of stress–strain curves,[33,34] as well as other specific mechanical
properties,[35–37] has been tried through ML-based methods re-
cently. Moreover, instead of mapping the mathematical relation
from structural parameters to mechanical properties, ML can
also effectively map the relation from mechanical properties to
structural parameters, which is the so-called inverse design. The
ability to directly inverse design metamaterials from given me-
chanical properties accelerates the process of designing a struc-
ture for specific applications.[38] However, the aforementioned
nonideal architecture, strongly coupled nonlinear mechanical de-
formation, and nonlinear constitutive models lead to the diffi-
culty of obtaining enough high-quality datasets for further accu-
rate ML training. That is, accurately tailoring the stress–strain
curve of snapping mechanical metamaterials for on-demand me-
chanical responses remains challenging.

Combining the ML with finite element analysis (FEA) tech-
niques, we propose an FEA-based ML method for accurately tai-
loring the stress–strain curve of flexible snapping mechanical
metamaterial sheets (Figure 1a). In the beginning, strongly cou-
pled nonlinear mechanical deformation and nonlinear consti-
tutive models are considered in the FEA procedure to improve
the quantification accuracy of the stress–strain curves. Then,
an ML pipeline consisting of support vector machine (SVM)
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classifiers, an inverse artificial neural network, and a forward arti-
ficial neural network is trained with the obtained FEA dataset and
utilized to analyze the mechanical response phases and stress–
strain curves. Consequently, the snapping metamaterial sheets
with different types of mechanical responses can be inversely de-
signed with an accuracy of 97.41% (a mean error of 2.59% in the
testing dataset), and it is further verified by the FEA simulations
and experiments (Figure 1b). Based on the established FEA-based
ML approach, a data-driven inverse design framework compris-
ing a three-step workflow to design snapping metamaterials is
summarized as follows: first, based on the specific mechani-
cal requirement from applications, the corresponding stress–
strain curves are extracted (Figure 1c); second, according to these
stress–strain curves, the ML pipeline inversely designs the struc-
ture of snapping metamaterial sheets; third, the designed snap-
ping sheets are fabricated and demonstrated for their diverse
applications. Finally, accurately tailored stress–strain curves for
some typical applications are demonstrated, showing the poten-
tial of the proposed framework. For instance, the impact en-
ergy absorption efficiency of our snapping metamaterials can be
tuned freely within its accessible range to adjust the rebound
height of a falling ball, and different actuation modes of soft actu-
ators can be spatially and temporally programmed to realize syn-
chronous and sequential motion with a simple pneumatic input
(Movie S1, Supporting Information).

2. Highly Nonlinear Behavior of Deformable
Beam-Based Snapping Metamaterial

Based on a kind of thermoplastic polyurethane (TPU) mate-
rial that is widely used in interactive intelligent systems,[22,39,40]

we design a fully soft-beam-based snapping metamaterial sheet.
From the perspective of mechanical behavior, TPU is also a rep-
resentative nonlinear material featuring relatively significant hy-
perelasticity, viscosity, and plasticity (elaborated in Sections S1
and S2 in the Supporting Information). A successful design of
TPU-based metamaterials lays the foundation for the design of
other similar materials or those with simpler constitutive mod-
els, such as commonly used 3D printing material, polylactic acid
(PLA), that can be regarded as linear elastic material, and widely
adopted silicone polydimethylsiloxane (PDMS) that is typically
coupled with hyperelasticity and viscosity.

Here, one type of the most widely adopted snapping
structures[25] constrained beam elements, is leveraged to con-
struct our snapping metamaterials. Due to the existence of
multiple snapping behaviors during stretching, the stretchabil-
ity of our designed snapping metamaterial sheets reaches up
to 50%, which is far beyond the design range of state-of-the-
art ML-based methods (refer to Section S10 in the Supporting
Information).[32,34] The snapping building cell of our metamate-
rial consists of two symmetrically designed double-clamped tilt
beams and three cantilever beams (as in Figure S1a in the Sup-
porting Information). Once the upper end of the upper cantilever
beam is displaced, the tilt beams are deformed and can some-
times induce snapping.[41] What is more, due to the co-existence
of two cantilever beams on both sides of each unit cell, two ends
of the tilt beam are not ideally clamped, making it even harder
to predict the stress–strain curve of the cell-based metamaterials.

Although other methods have been proposed to describe the be-
haviors of these nonideal chained beams,[42] their theories only
work well under the premise that all the deformation and con-
stitutive models are linear (Section S1, Supporting Information).
Models for nonlinear constitutive materials still need to be stud-
ied, and thus we compared five types of analytical modeling and
simulation methods of a single unit cell with experimental results
(Figure S1d, Supporting Information). Thereby, it can be con-
cluded that both geometric structure and highly nonlinear con-
stitutive material contribute to the complexity of such a nontrivial
model. Hence, it is reasonable to accurately test the constitutive
model of the TPU material and analyze the force–displacement
curve with FEA-based methods.

In our design, the mechanical metamaterial is constructed by
an array of the aforementioned building cells. The architecture
of metamaterials can thus be defined by eight structural param-
eters (the inset in Figure 1a), which are the number of columns
(ncolumns), the number of rows (nrows), the height of a unit cell (h),
the width of the cantilever beam (d), the horizontal length of the
tilt beam (l), the angle between the cantilever beam and tilt beam
(𝛼), the width of the tilt beam (w), and the thickness of the meta-
material sheet (t). Among these structural parameters, h, d, and
t are constants; ncolumns, nrows, l, 𝛼, and w have a more direct and
predominant impact on the snapping behavior and are variables
that can be tuned. In these tunable parameters, ncolumns and nrows
are the array parameters that represent the size of metamaterials;
l, 𝛼, and w are the geometry parameters that describe the geomet-
ric structure of each unit cell. Considering the influence of the
moment of inertia, w3 is also included in the geometry parame-
ters (Section S4, Supporting Information).

During the investigation, we found that the phase of differ-
ent mechanical responses is subjected to the structural param-
eters of metamaterials. In particular, both in-plane and out-of-
plane deformations can occur under tension. When the meta-
material is under tension, the out-of-plane phase of mechan-
ical responses will easily lead to interference with other ob-
jects in the system and hence cause undesired features in
stress–strain curves (Figure S10, Supporting Information). Con-
sequently, such out-of-plane behaviors make the corresponding
response analysis/predictions very complex.[26] To avoid unnec-
essary phases of mechanical responses, the behavior of snap-
ping metamaterials under tension is studied experimentally
(Figure 2a; Figure S8a, Supporting Information). By varying the
geometry parameters, the typical in-plane deformation and out-
of-plane deformation can be observed. Furthermore, our tested
data are classified by an SVM classifier, which divides the whole
design space into two phases. As the decision boundary is appar-
ently nonlinear, the radial basis function is used as our kernel
function of SVM. The resulting SVM indicates that structures
with large l, large w, and small 𝛼 can cause out-of-plane deforma-
tion easily. Specifically, the in-plane and out-of-plane deforma-
tions are a combined effect of tilt beams and cantilever beams.
With larger w and smaller 𝛼, the tilt beams tend to bend or twist
out of the plane, where the required energy for its deformation
is minimal. Similarly, with smaller l, the occurrence of the can-
tilever beam deformation is easier than the deformation of the
tilt beam, which also leads to out-of-plane deformation. As in
Figure 2b, the stress–strain curves of the in-plane deformation
are smooth, whereas the out-of-plane stress–strain curves are
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Figure 2. Decision boundary of different mechanical responses and the corresponding representative stress–strain curves. a) Decision boundary of
the occurrence of the in-plane and out-of-plane deformations. b) The FEA result of the in-plane and out-of-plane deformations, and their corresponding
stress–strain curves. c) Decision boundary of the occurrence of snapping and nonsnapping deformation. d) The simulation, experimental, and predicted
stress–strain curves of nonsnap metamaterials. e) Four types of mechanical responses, in which snapping occurs, result in one wave, two waves, three
waves, and four waves, respectively. The simulation, experimental, and predicted stress–strain curves of snapping metamaterials under tension are
presented. The structural parameters of these metamaterials are provided in the Supporting Information.

usually featured by an abrupt turning point that represents an
obvious out-of-plane deformation. In addition, the simulations
including both the in-plane and out-of-plane phases match well
with the experimental results (Figure S8b,c, Supporting Informa-
tion).

Within the phase of in-plane deformation, the phases of non-
snapping and snapping are further studied. Given a certain value
of l (l = 2.0 mm), the phase diagram of the snapping occurrence
that is subjected to various structural parameters is plotted based
on the simulation (Figure 2c). The SVM classifier is applied here
again to determine the nonlinear decision boundary. It can be
concluded that the larger the array size is, the easier the meta-
materials are with identical geometry parameters snap. What is
more, small 𝛼 and w also result in the snapping behavior of the

metamaterials. As in Figure 2d, typical stress–strain curves of
the nonsnap metamaterials are monotonic and sometimes have
an “S” shape with a plateau of a small slope. In contrast, those
of the snapping metamaterials have negative slope regions (as
in Figure 2e), and the number of which usually depends on the
number of rows of building cells in the metamaterial. Generally,
such a row-by-row snapping behavior from FEA agrees well with
the experimental results, which implies the effectiveness of our
FEA-based method in producing large amounts of data for ML.
Notably, although the error between simulation and experimen-
tal results generally increases with the array size of the meta-
materials, Figure 2d,e still shows the good accuracy of our FEA-
based ML model within the phase of nonsnapping and snapping.
When better computing resources are available, more precise
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simulation methods may be developed in the future to further
minimize the errors at local features (e.g., phase shift, peaks, and
valleys), if necessary.

3. Detailed Architecture, Validation, and
Optimization of the Neural Network

After the boundary determination by SVM classifiers, a snapping
metamaterial sheet with target mechanical responses is then de-
signed through a neural network. The neural network directly
predicts the structural parameters of metamaterials with the de-
sired stress–strain curves, facilitating a fast inverse design of
snapping sheets. When collecting the data used for training the
neural network, the metamaterials with the given geometry (w,
w3, l, and 𝛼) and array (ncolumns and nrows) parameters were cal-
culated by FEA to obtain the corresponding force–displacement
curves. Due to the inconsistency in each metamaterial’s origi-
nal lengths and total displacements, we normalized the data and
transformed the force–displacement curves into the stress–strain
curves (Section S6, Supporting Information). Then, a training
dataset containing 2065 data samples is generated. Each set of
the data consists of structural parameters X and corresponding
stress–strain curve features Y. Stress–strain curve features Y are
the stress points extracted at uniform strain intervals from the
FEA, and a total number of 31 stress points are extracted. With
a cubic or spline interpolation method, a series of 31 points are
accurate enough to reconstruct the original stress–strain curve,
even for the curves with multiple peaks and valleys.

After the training dataset is obtained, a neural network can
then be constructed for training. The neural network consists
of an inverse network and a forward network, which are trained
separately. To train the inverse network, stress–strain curve fea-
tures Y and structural parameters X are the input and output
(Figure 3a), respectively. For the forward network, the stress–
strain curve features Y and structural parameters X are the out-
put and input, respectively. Notably, due to the nonunique corre-
spondence between stress–strain curve features Y and structural
parameters X in the inverse design process, an inverse network
is thus followed by a forward network to ensure that the output
stress–strain curves match with the desired stress–strain curve
features Y well.[33]

After proper data augmentation to complement our dataset
(Section S6, Supporting Information), both networks are opti-
mized using a randomized search followed by a finer grid search
to determine the hyperparameters (Section S5, Supporting In-
formation). An inverse neural network with 128 neurons in the
first hidden layer and 600 neurons in the second hidden layer,
and a forward neural network with 300 neurons in the first hid-
den layer and 800 neurons in the second hidden layer are finally
determined. Due to the highly nonlinear behavior of metamate-
rials, a large network is essential, which contributes to a better
fitting of the nonlinear stress–strain curves. The training epochs
of the inverse neural network and forward neural network are
finely tuned so that our model converges better and no obvious
overfitting and underfitting occur (Section S5, Supporting In-
formation). To improve the prediction accuracy, six inverse net-
works are connected parallelly to the identical forward network
(more details in Section S5 in the Supporting Information). Dur-
ing a typical stress–strain curve design process, one optimal pre-

dicted curve and its corresponding structural parameters are se-
lected among the six results. Then, to evaluate the predictive ef-
fectiveness of our model, a concept of relative error is introduced
(Figure 3b). It is defined as the ratio of the area error divided by
the area between the ground truth stress–strain curve and the
normalized strain axis. The relative errors of each point in the
training dataset and testing dataset (231 data samples that are
never seen by the ML model) are calculated respectively. As in
Figure 3c, by increasing the number of inverse networks in par-
allel, the prediction error of our ML model decreases by a ratio of
about 50%. The individual relative error of each data point is plot-
ted in Figure 3d,f, showing that most data points have good pre-
diction accuracy. The mean relative errors of the training and test-
ing dataset reach 1.08% and 2.59%, which implies accuracies of
98.92% and 97.41%, respectively. Moreover, the probability densi-
ties of relative errors for five types of mechanical responses (non-
snap, one wave, two waves, three waves, and four waves) are also
analyzed. Based on Figure 3e,g, it can be concluded that our data
augmentation method successfully balances the data amount of
five types of mechanical responses, and nonsnap metamaterials
tend to have smaller training-to-test result variation than meta-
materials with snapping behaviors.

Notably, due to geometry conflict or the limitation of the
adopted fabrication process, the selected optimal result of inverse
design may generate structural parameters that are difficult to re-
alize physically. Then all the results need to be checked to select
the one that can be fabricated. Otherwise, the target stress–strain
curve has to be compromised, and an alternative one that satisfies
the requirement as well can be selected for inverse design.

4. Tunable Energy Absorption and Precisely
Programmable Actuation Based on Snapping
Metamaterials

Due to its unique fast-shifting behavior, snapping is widely
harnessed in impact energy absorption,[43] programmable
actuation,[24,25] and reconfiguration of soft actuators.[44]

To demonstrate the capability of our design framework, a
few metamaterials with the proposed snapping structure
are fabricated for impact energy absorption and motion
program.

The performance of energy absorption is often closely related
to the energy changes during deformation. For snapping struc-
tures, the capability to absorb external energy depends on the lo-
cal maximum and minimum values of the stress–strain curve
and the stroke of the snap-through process.[20] To characterize
the vibration-damping ability of the designed structure, we use
the area of the snap-through process (product of stroke and
fluctuation of the snap wave) to represent the absorbed energy
(Figure 4a). Within our design range, the value range and bound-
ary of the absorbed energy can then be identified (Figure 4b).
Therefore, a suitable stress–strain curve and its correspond-
ing metamaterial can be inversely designed to achieve a spe-
cific energy absorption efficiency as well as a target threshold
force, which shows the ability of our inverse design method
to co-design two mechanical properties. Specifically, a ball falls
and hits the horizontally fixed metamaterials, and then the re-
bound heights are recorded to reflect the impact energy absorp-
tion efficiency of the snapping metamaterials, as in Figure 4c
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Figure 3. Evaluation and optimization of the neural network. a) The inverse network generates six sets of snapping mechanical metamaterials with
different structural parameters that have stress–strain curves similar to that of the desired one. The forward network predicts the corresponding stress–
strain curve of generated snapping mechanical metamaterials. b) Definition of the relative error. c) Change of mean relative error versus the number of
inverse networks in parallel. d) The relative error points of training data (2065 samples) and f) testing data (231 samples). The probability density of
relative error of five scenarios in the conditions of e) training data and g) testing data.

and in Movie S2 (Supporting Information). Then, three stress–
strain curves with different energy absorption capabilities are se-
lected and inversely designed to test the energy absorption effi-
ciency (more details in Section S7 in the Supporting Informa-
tion). Two of these metamaterials can snap under tension, and
the other one is a typical nonsnap structure (Figure 4d–f). Both
snapping metamaterials have identical snap-through thresholds
but different energy absorption capabilities. The nonsnap meta-
material has an absorption efficiency of 86.0%. By contrast,
the snapping metamaterials with different structural parameters
have absorption efficiency values of 93.4% and 98.6%, respec-
tively. Moreover, it is worth mentioning that the difference be-
tween the maximum and minimum rebound heights is tenfold,

demonstrating a good tunability of absorption efficiency with our
method.

As the behavior of soft actuators can be programmed by struc-
tural design,[45,46] our method can be further applied to improve
the spatial and temporal behavior of reconfigurable soft actua-
tors to increase their level of mechanical intelligence (Figure 5).
By bolting different metamaterials on opposite sides of a pneu-
matic linear actuator (details in Section S8 in the Supporting In-
formation), the soft actuators can realize three actuation modes,
which are stretching, bending, and sequential bending under
a simple pneumatic input. Hence, the actuation modes can be
easily reconfigured by varying design parameters and replacing
these metamaterial sheets. Since the output of soft actuators
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Figure 4. Tailoring the stress–strain curve of snapping mechanical metamaterials for tunable impact energy absorption. a) The energy absorbed by
snapping metamaterials during impact is related to the area of the snap-through process. b) The accessible energy absorption range and the selected
points that satisfy the corresponding threshold and energy absorption requirement. Two points with different thresholds but identical snap-through area
are selected, and the other one has no threshold and snap-through area. c) The experimental setup of the impact energy absorption test. The snapping
metamaterial sheet is fixed flat on the device to absorb the energy of a falling ball. The stress–strain curves and energy absorption ability of d) a non-snap
metamaterial, e) a snapping metamaterial with a small snap-through area, and f) a snapping metamaterial with a large snap-through area.

is force, we convert the stress–strain curve that results from a
displacement-controlled measurement to the strain–stress curve
that results from a force-controlled measurement (Figure 5a).
The waves in the stress–strain curve are flattened because the
force exerted on the metamaterials becomes an independent
variable, which originates from that the metamaterial will con-
stantly deform once the applied tensile force reaches the snap-
through threshold. Therefore, the deformation of snapping meta-
materials before and after the snap-through process is regarded
as small, making the spatial and temporal programmability of
soft actuators possible. Achievable strain–stress curves within
our inverse design range are then plotted, and four of them are
inversely designed for target mechanical responses (Figure 5b;
Figure S18, Supporting Information). These metamaterials are

then bolted on opposite sides of a two-segment soft actuator to
program its behavior (Figure 5c). Three of these metamaterials
have a segment of strain–stress curve where the strain contin-
uously rises with the stress kept constant. By contrast, the other
one has a nonsnap structure, which is unable to realize snapping-
induced large strain. As in Figure 5d,e and in Movie S3 (Sup-
porting Information), the spatial and temporal programmabil-
ity is determined by the stress–strain curve of these snapping
metamaterials. When the snapping metamaterials with identical
snap-through thresholds are bolted on opposite sides, the actua-
tor elongates evenly. However, when the nonsnap metamaterials
and snapping metamaterials are bolted on opposite sides of an
actuator, the metamaterial with a snap-through threshold force
mainly deforms, making the actuator bend toward the nonsnap

Adv. Mater. 2024, 36, 2404369 © 2024 Wiley-VCH GmbH2404369 (7 of 11)
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Figure 5. Tailoring the stress–strain curve of snapping mechanical metamaterials to spatially and temporally program a soft actuator. a) Stress–strain
curve measured by a displacement-controlled method is transformed into a strain–stress curve measured by a force-controlled method. b) Possible
range of predicted strain–stress curves and four generated curves for the programming of soft actuators. c) Detailed structure of the reconfigurable
soft actuator based on our snapping metamaterials. The snapping metamaterials are bolted on the structure so that they can be easily reconfigured.
d) Four snapping metamaterials and their corresponding strain–stress curves. The states of the fabricated metamaterial sheets before and after stretch
are shown in the inset in the figure. e) Three actuation modes of the soft actuator are programmed by different combinations of snapping metamaterials,
which are stretching, bending, and sequential bending. Different states of the actuation are labeled using different colors.
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side. Then, the metamaterial with a snap-through threshold de-
forms until the applied stress exceeds the threshold value. Finally,
leveraging the programmability of the actuation threshold, two
metamaterials with different thresholds are integrated into the
actuator together, and the actuator segment with a lower snap-
through threshold deforms first. After the segment with a lower
threshold finished bending, the strain within the actuator goes
higher and the other segment of the actuator begins to bend.
Therefore, an actuator with sequential motions can be configured
on demand using our approach.

In addition, we further investigate the influence of strain
rate on the behaviors of metamaterials. Due to the transition
from rubber-like behavior to glassy-like behavior in high strain
rates, the mechanical responses of the material are completely
different,[47–49] making the stress–strain curves highly unpre-
dictable. Hence, only the behavior of the TPU material under low
strain rates is considered in this work. As elaborated in Section S2
(Supporting Information), higher strain rates lead to stiffer ma-
terials, which in turn increase the value of stress–strain curves
of the metamaterials. However, the influences of strain rate on
the metamaterials with different structural parameters are equiv-
alent. As in Figure S5 (Supporting Information), with the strain
rate changes, the relative relation between different stress–strain
curves remains the same (for example, the curve of metamaterial-
1 is always higher than that of metamaterial-2, and the curve
of metamaterial-2 and metamaterial-3 always intersect with each
other at the normalized strain of 0.7). Based on the above observa-
tions, we conducted some experiments where the soft actuators
were driven under different actuation speeds. As in Figure S19
and Movie S4 (Supporting Information), the actuation of the soft
actuator completed in 11, 5, and 2 s, respectively, and even the
deformation sequence of each row of the cell unit in metamateri-
als remains identical. The result proves that different strain rates
have little influence on the sequential motion of the soft actua-
tor. Although extra simulations and experiments are needed to
accurately predict the stress–strain curve under different strain
rates, our inverse design framework is still viable, and the con-
clusion drawn under a specific strain rate will provide important
information for the applications demonstrated under other strain
rates.

In brief, the spatial and temporal programmability of snap-
ping sheets mainly results from the snap-through process of
the stress–strain curve. By extracting the specific mechanical
characteristics, such as snap-through threshold, snap-through
stroke, and snap-through related energy, needed for inverse de-
sign, a stress–strain curve that satisfies the requirement can be
defined (Sections S7 and S8, Supporting Information). Then,
following the three-step framework in Figure 1, snapping me-
chanical metamaterial sheets that facilitate truly mechanical
intelligent applications can be fabricated on demand. Such
an approach enables structurally encoded mechanical intelli-
gence to simplify the constitution of the system and thus al-
lows the actuator to achieve complex sequential behaviors for
more tasks with simplified control.[50] Further, according to re-
cent high-profile perspectives,[51,52] it can be envisioned that
our three-step design framework can accelerate the accurate
design of the next-generation flexible snapping structures for
responsive and interactive systems with embodied mechanical
intelligence.

5. Conclusion

Aiming to tackle the challenge of strongly coupled nonlinear de-
formation and constitutive model of soft snapping metamateri-
als, we propose a data-driven inverse design framework that can
accurately tailor their stress–strain curves through an FEA-based
ML approach to fulfill the target mechanical response demands
of various applications. Owing to the high-quality data obtained
from FEA and the good fitting capability of the neural networks,
a decent accuracy has been achieved by our approach and further
verified experimentally. Due to the strong adaptability of FEA and
ML, our FEA-based ML thus provides a feasible framework that
can be potentially adapted to the inverse design of other metama-
terials with strongly coupled nonlinear deformation and consti-
tutive models in the future.

6. Experimental Section
Sample Fabrication: First, the snapping pattern was drawn using com-

mercial computer-aided software (AutoCAD 2021 and Autodesk Inventor
2022). Then, TPU sheets (from Alibaba, China) with a thickness of 0.8 mm
were cut into the designed shapes via a UV laser marker system (GH-10U
PRO, Huagong Laser, China). Finally, the cutting powder was removed
from TPU surfaces using water or gas flushing. The calibration between
the process and design parameters was obtained by a stereoscopic micro-
scope (Stemi 508, Carl Zeiss, Germany).

Mechanical Testing: As in Figure S6 (Supporting Information), the
hyperelasticity of TPU sheets was tested using a universal testing sys-
tem (5944, Instron, USA), and the plasticity of TPU sheets was tested
using a dynamic testing instrument (E1000, Instron, USA). The strain–
stress curve of the designed snapping structures during the stretching
process was recorded using a homemade test bench. The test bench (as
in Figure S9 in the Supporting Information) was composed of a linear
slide (from Alibaba, China), a force gauge (from Alibaba, China), and 3D-
printed fixtures (PLA, Ultimaker S5, The Netherlands). The testing strain
rate was consistent with the strain rate of material testing, which was
0.2 min−1.

Finite Element Analysis-Based Simulations and Dataset Preparation:
FEA simulations of the stress–strain curves of snapping structures were
conducted using Abaqus 2023/explicit (Dassault Systèmes, France). The
simulated samples were meshed in a C3D8R manner for dynamic analysis.
The seeding of the overall sample was 0.2 relative size and 0.1 relative size
for tilt beams. To maximally simulate the quasistatic behavior, the tension
rate was set to be 0.4 mm s−1 (this tension rate in simulation was low
enough for the quasistatic simulation of metamaterials; more details can
refer to the Python script provided). The constitutive model of TPU ma-
terial was fitted using the second-order polynomial model with user-fined
plasticity (details in Sections S1 and S2 in the Supporting Information). To
obtain enough simulation results for training the above neural network, a
total of 2296 simulations were calculated by calling a script in Abaqus,
among which 2065 samples were used for training and 231 samples were
used for testing. A computer with two Intel Xeon Gold 5218R CPUs was
used to obtain the simulation dataset, and it took around a month for
the computer to compute. After the FEA calculation for each parameter, a
txt file containing the strain–stress profile was generated. Then, MATLAB
R2020b was used to postprocess these txt files and generate structural pa-
rameters X and stress–strain curve features Y accordingly. Specifically, the
strain rates of the FEA simulation were the same with that of the experi-
ments.

ML Model Setup and Evaluation: The inverse design neural network
composed of an inverse network and a forward network was realized by
multilayer perception networks in Python 3.9 (TensorFlow framework). The
architecture optimization of neural networks was performed on a machine
with NVIDIA GeForce GTX 1650 GPU, and all the optimization and train-
ing processes took about 6 days to complete. The structures of the two
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networks were finally determined as 30 × 128 × 600 × 12 and 12 × 300 ×
800 × 30, respectively. The input of the inverse network was the points on
the stress–strain curve, and the output was structural parameters. For the
forward network, the input and output were opposite. Before the training
process, the input of the inverse model was augmented in an undifferenti-
ated manner, but the input of the forward model was classified according
to the shape of the stress–strain curve before augmentation. Detailed data
processing procedure is elaborated in Supporting Information.

Demonstrations: The pipe in the ball rebound demonstration was
made of polymethylmethacrylate (PMMA, from Alibaba, China). The
bouncing height was recorded using a digital camera (EOS R5, Canon,
Japan). The reconfigurable actuator was composed of 3D-printed stands
(from Wenext, Shenzhen, China) and silicone air tubes (Ecoflex 00–30,
Smooth-on, America). Adobe Premiere 2020 and ScreenToGif were used
to extract photos and generate videos.

Statistical Analysis: The source dataset was obtained via FEA in
Abaqus and divided into two parts (including in-plane metamaterials and
out-of-plane metamaterials) using a trained SVM model. Then, due to the
inconsistency in the original length and total displacement of each meta-
material, the data were normalized and the force–displacement curves
were transformed into the stress–strain curves (see Section S6 in the Sup-
porting Information). Due to the vibration of the quasistatic simulation,
there could sometimes be fluctuation in the simulated stress–strain curve.
The smooth function was used in MATLAB for smoothing all the stress–
strain curves. Finally, the processed data were split into training (2065
samples) and testing (231 samples) datasets randomly. All steps above
for statistical analysis were performed in Python.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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