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Abstract
Flexible/stretchable electronics have been well-developed in epidermal devices, wearable
electronic systems and soft robotics for physiological signal detecting, real-time health
monitoring and human–machine interfaces. As one of the most widespread-used transducers,
strain sensors are playing a promising role in the developments of ongoing flexible electronics,
especially equipped with tunable sensitivity (or gauge factor, GF). However, present
investigations mainly focus on the enhancement of the sensitivity which required subtle designs
or sophisticated fabrication processes. In this work, we report a facile fabrication strategy for
configuring strain sensors with tunable sensitivity by adjusting the orientations and duty ratios
of the micro-nano hierarchical Ag-coated microgrooves from laser patterning. The
heterogeneous micro-nano structures enable localized large deformation to result in crack
propagation on electrical layer during stretching, which endows the device with customized GF
from 3.4 to 4570.6. The sensitivity-tunable strain sensor shows a great potential in monitoring
various health conditions and voice recognition. This technique provides a facile and robust way
to fabricate high-performance strain sensors for wearable physiological monitoring systems.

Supplementary material for this article is available online

Keywords: tunable sensitivity, orientation of microgrooves, duty ratio, strain sensor,
flexible electronics

(Some figures may appear in colour only in the online journal)

1. Introduction

Stretchable andj flexible electronics have greatly contributed
to present smart intelligent systems [1, 2], wearable devices
[3, 4] and epidermal electronics [5, 6] for sophisticated soma-
tosensory detection [7, 8], physiological signal monitoring

3 These authors contributed equally to this work.
∗
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[9–11] and human–machine interactions [12, 13], because of
their flexibility/stretchability, and compatibility with human
body [14]. As one of the most fundamental transducers, strain
sensors were proposed for precisely exporting the variation of
strain under deformation by consequently variable resistance.

Sensitivity is one of important performance metrics of
strain sensors. To achieve high sensitivity of strain sensors,
plenty of approaches have been developed to obtain elast-
omer composites and conductive nanomaterials, such as
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solution mixing [15–17], screen and inkjet printing [18–20],
spraying coating [21–25] and chemical/physical vapor depos-
ition [26–29] and so on. The composite increased the sens-
itivity of the strain sensor which can be used for detection of
minute muscle movements such as artery pulses. However, the
sensing mechanism of the composite is relatively complex.
Strain sensors with high gauge factor (GF) are usually lim-
ited by the finite strain range and the linearity decreased under
large strain, which makes it inappropriate for large motion
detection, where a sensor with a larger strain range is pre-
ferred. However, it is a challenge to reach a balance between
high sensitivity as well as good stretchability since strain
sensors with high stretchability usually perform low sensitiv-
ity [30]. Some works could tune the sensitivity by adjusting
the composition of the composite, but the fabrication process
requires subtle steps. It is not convenient to manipulate sensors
with sensitivity and the adjusting range is limited [31–35].
Thus, it is important to endow strain sensors with tunable sens-
itivity in a simple yet effective method.

UV-lasering process represents a convenient fabrication
approach for the versatile and efficient creation of a patterned
structure without extra molds or photomasks [36]. Complex
micro-nano hierarchical structures can be formed by sub-
tractive manufacturing according to programmed paths. When
the laser is incident on an opaque substrate, the material
will absorb part of the energy and undesired regions will be
removed by selective laser ablation.

In this work, we reported a convenient method to turn a flat
elastomeric polymer substrate towards a flexible strain sensor
with tunable sensitivity. A facile procedure based on selective
laser scanning was established to engrave a designed pattern
onto an elastomeric polymer substrate surface and then coated
with a thin silver film. The effect of surface topography on the
flexible strain sensors was investigated in detail using stretch-
ing tests. Applications demonstrate the potential for a broad
range of usages in epidermal electronics, over-strain alarm and
surface shape measurement.

2. Experimental section

2.1. Materials and preparation

10 g silicone base and 1 g curing agent of PDMS (Sylgard
184, DowCorning Corporation)mixedwith 0.2 g carbon black
(XC72R, CABOT, Alibaba, China) were employed as the
deformed elastomeric polymer substrate with enhanced light
absorbability. The carbon added PDMS (cPDMS) precursor
was stirred at room temperature for 2 min and then degassed
in a vacuum chamber for 10 min. The uncured cPDMS mix-
ture was scraped on a polyethylene terephthalate plate with a
film applicator (1000 µm, Leaoyqi) and then cured at 90 ◦C
for 45 min in an oven (UF 55 plus, Memmert, Germany) as
the flat substrate.

2.2. Fabrication of the flexible strain sensor

The surface topographies of grooves with different patterns
were designed in AutoCAD (Autodesk, U.S.). As shown

in figure 1(a), designed patterns were engraved on the flat
cPDMS substrate surface with a UV-laser marker (HGL-
LSU3/5EI, Huagong Laser, China). After cleaning with iso-
propanol, the sample was loaded into thermal evaporation
instrument system (BOX-RH400, SKY Technology Develop-
ment Co., Ltd, CAS, China) for deposition of an Ag cathode
(250 nm). In the end, copper wires were electrically connected
to the conductive film using silver paste to assemble the strain
sensor.

2.3. Surface characterization

The surface topographies, such as the three-dimensional
(3D) profile, surface roughness (Sa) and height differ-
ence, were measured by a 3D optical surface profiler
(NewView 9000, ZYGO Corp., USA). The detailed micro
surface morphology was observed by a field scanning elec-
tron microscope (FSEM, GeminiSEM300, Carl Zeiss, Jena,
Germany). The constitution and purity were confirmed by
element analysis using an ultra-high-resolution analytical
FIB-SEM system (Helios NanoLab G3 CX, FEI Corp.,
Czech).

2.4. Electrical characterization

The sensor’s resistance was measured by a Data Acquisi-
tion/Switch Unit (34 461A, KeySight Technologies). An oscil-
loscope (TBS 1202B-EDU, Tektronix, USA) was used to
measure the voltage of the sensor in circuit for calculated
resistance.

2.5. Finite element analysis

Three-dimensional finite element analysis allows the predic-
tion of mechanical deformations and strain distributions of the
simplified model by using COMSOL Multiphysics. A linear
elastic model (Young’s modulus, 750 kPa and Poisson’s ratio,
0.49) was used to describe the elastomer’s behaviour upon
stretching.

2.6. Sensor preparation for demonstrations

In this work, for the fabrication of strain sensors (15× 30mm)
with different angle-designed patterns, the thickness of
cPDMS was 800 µm, the laser scanning speed was
200 mm s−1, hatch spacing was 50 µm. FSEM images for
element analysis have been added as figure S1 in the sup-
porting information (available online at stacks.iop.org/JMM/
31/085003/mmedia). The results show that the Ag content
increases with the increase of the thickness of Ag film. When
the deposited thickness of Ag film was 50 nm or 150 nm,
the Ag film was insulating because Ag cannot completely
cover the surface with anisotropic microstructures and failed
to form conductive pathways until the deposited thickness of
Ag film was 250 nm. Therefore, the thickness of Ag film was
chosen as 250 nm for the strain sensor. The strain sensors
with designed pattern angle of 90◦ were used for bending
performance tests, cyclic tensile tests, over-strain alarms and
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Figure 1. Fabrication process and photos/micrograph of the sensitivity-tunable strain sensor. (a) Schematic fabrication process of the flexible
strain sensor. (b) Photography of the sensitivity-tunable strain sensor. (c) FSEM images of surface morphology of the sensitivity-tunable
strain sensor, top view (i) and side view (ii). (d) Elements analysis of the top surface of the sensitivity-tunable strain sensor.

surface shape measurement. For health monitoring and voice
recognition, the angle was chosen as 0◦ and the thickness
of cPDMS substrate was 200 µm to increase the adhesion
to the epidermis. Besides, in order to meet the requirements
for measurement accuracy, the copper wires were connected
into a circuit and the voltage between two copper wires was
detected using an oscilloscope. The change of the resistance
could be recognized through the relation between resistance
and voltage, equation (1), where R’ is the resistance of the
sensor, R is the resistance of the electrical resistance, E is
the voltage of DC Power Supply and u is the voltage of the
sensor

R ′ =
Ru
E− u

. (1)

In the experiments of tunable sensing performance for strain
sensors with different duty ratios-designed patterns, the
hatch spacing was 5 µm, the scanning speed was kept at
200 mm s−1 for one pass and the angle of the designed
pattern was chosen as 90◦ for its unique linear relation-
ship. To keep the electroconductibility, a thin layer Ag
film (∼650 nm) was coated on the laser-scanned cPDMS
surface.

3. Results and discussion

3.1. Fabrication and surface characterization

Through Zhang’s work [36], it has been discovered that
un-melted particles spread due to the thermal gradi-
ent and generated triangle-shape-liked microgrooves with

micro/nanostructures on the laser-scanned path. The designed
patterns and uneven micro/nanostructures could be employed
to achieve tunable sensitivity in strain sensors. What’s more,
the triangle-shape-liked morphology makes it easy to deposit
metal film on the sidewall of the microgrooves. Inspired by
this finding, we fabricated a sensitivity-tunable strain sensor
with different orientations and duty ratios of the microgrooves
assisted by a UV-laser. Figure 1(a) schematically shows the
fabrication processes of the sensitivity-tunable strain sensor
and the photography of the fabricated sensor can be seen
in figure 1(b). The top view shows the surface of laser-
scanned cPDMS substrate, figure 1(c(i)). The side view of
microgrooves was clearly shown in figure 1(c(ii)). Element
analysis was used to characterize the component of the sensor.
It can be found that the sensor is mainly composed of Si
and Ag, which demonstrates that the Ag thin film is the
conducting layer cover the elastomeric polymer substrate,
figure 1(d).

The surface features of the strain sensor, e.g. roughness
and morphology, were related to the designed pattern and the
laser operational parameters. To further understand their rela-
tionship, the pattern was designed as lines and the hatch spa-
cing of adjacent laser scanning lines (∆L, mm) was adjus-
ted for different extensible structures. During the process, the
laser scanning speed (v, mm s−1) was adjusted to modify the
laser’s working parameters. As shown in figure 2(a), a 3D
morphology of the sensor was measured by a 3D optical sur-
face profiler, which also reveals the sensor’s surface roughness
(Ra) and top surface morphology. The Ra of each sensor is
determined by averaging three different scanning areas with a
dimension of 350 × 350 µm2, figure 2(b). On the condition
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Figure 2. Surface morphology of the sensitivity-tunable strain sensor. (a) 3D morphology of the laser-scanned surface. (b) The surface
roughness (Ra) of laser-treated substrates under different scanning speed and hatch spacing. (c) The surface morphology of laser-scanned
substrates under different hatch spacing. (d) The surface morphology of laser-scanned substrates under different scanning speeds.

that the hatch spacing was closed to the laser facula’s width
(∼25 µm), there is little variation of surface roughness at dif-
ferent scanning speeds, because the tracks became fluctuant
and irregular-shaped and an unstable condition occurred.
When the designed hatch spacing was more than the laser fac-
ula’s width (∼25 µm), selective laser ablation removed mater-
ials from undesired regions and left a triangle groove on the
surface, figure 2(c). Low scanning speed will increase the
time interval between tracks, and relevantly promote the heat
transfer from the present track to previously solidified mater-
ials, increasing the thermal gradient between tracks and fur-
ther enhancing the intensity of humping [37]. If the scanning
speed reached over 400 mm s−1, hatch spacing has little effect
on surface roughness. With the discontinuity of the track, it
is difficult to recognize the direction of laser scanning beam,
figure 2(d).

To further understand the effect of the designed pattern on
the strain sensor’s sensitivity, hatch spacing was chosen as
0.05 mm and 200 mm s−1 for the laser scanning speed, which
could guarantee complete line-shape pattern and concurrently
save process time. The UV-lasering process can be completed
within 5 min in an ordinary laboratory environment for eight
flexible strain sensors at once. The whole processing time was
listed in table 1, which was 275 min approximately.

Table 1. Processing time estimation for a sensitivity-tunable flexible
strain sensor.

Processing steps Time (min)

Pattern plotting 5
cPDMS mixing 5
Degassing 10
cPDMS curing 45
UV laser treating 5
Cutting and cleaning samples 5
Depositing 180
Sticking copper wires 20
Total 275

3.2. Sensing mechanism

As shown in figure 3, FSEM images and schematic dia-
gram have been employed to explain the sensor’s sensing
mechanism. When the UV-laser scanned the substrate,
uneven micro/nanostructures appeared on the scanning path.
Figures 3(a(i)) and (b(i)) show FSEM images of the cross
section of the cPDMS substrate before and after depos-
ition. Figures 3(a(ii)–(iv)) and (b(ii)–(iv)) show the top view
of the substrate under various strains, respectively. Notable
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Figure 3. Sensing mechanism investigation. (a) FSEM images of pure cPDMS substrate and (b) FSEM images of Ag thin film ((i) for cross
section and (ii) to (iv) for various strains). (c) Schematic diagram of crack propagation and conductive pathways upon stretching.

microcracks generated on the Ag thin film under strain mainly
at the bottom of microgrooves that cannot be seen on the
pure cPDMS substrate. This phenomenon was induced by
the mismatch of Young’s modulus between cPDMS substrate
and Ag thin film. The sensor’s sensing mechanism could be
explained as crack propagation based on this effect. As shown
in figure 3(c), anisotropic micro/nanostructures made micro-
cracks sensitively originate and propagate in one specific dir-
ection along coated Ag thin film upon stretching. The opening
and enlargement ofmicrocracks critically limited the electrical
conduction of Ag thin films upon stretching. Consequently,
conductive pathways were blocked and the overall electrical
resistance of Ag film increased in one specific direction. It
can be concluded that the resistance of the sensor experi-
enced a relative increase as the applied strain increased. How-
ever, when all the conductive pathways blocked by micro-
cracks, the Ag film turned into a non-conducting state as
the result of a large strain [20, 29]. When the strain was

released, microcracks recovered to initial conditions and path-
ways returned to the conductive state.

3.3. Tunable sensitivity of strain sensors

During the laser scanning, the scanning speed (v, mm s−1)
and hatch spacing of adjacent laser scanning lines (∆L, mm)
can be adjusted to affect the patterning behaviours and fur-
ther influence the obtained surface morphology. When the
scanning speed and hatch spacing were selected, the size
of the microgroove was determined. In this condition, dif-
ferent pattern designs engraved on the surface of the sub-
strate were supposed to have an influence on the conduct-
ive pathways and thus the sensitivity of obtained strain
sensors.

As shown in the inset of figure 4(a), the angle between the
microgroove and the stretching direction was designed with
different values (0◦, 30◦, 60◦, 90◦). In the tensile testing, the
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Figure 4. Tunable strain sensing performances. (a) The relative resistance change along the variation of the angle. (b) The relative
resistance change along tensile strain up to 50%. (c) The relative resistance change along the duty ratio. (d) Finite element analysis of the
strain distribution for sensors to tensile strains with different (i) angle-designed and (ii) duty ratio-designed surface morphologies.

resistance of the electrode was measured using a data acquis-
ition/switch unit. The change in resistance of the electrode
during substrate stretching can be expressed as ∆R, ∆R =
R–R0, where R0 is the initial resistance under no strain and R is
the resistance under various strains. The GF (GF= (∆R/R0)/ε)
was calculated to describe the sensitivity of the sensors. As
shown in figure 4(a), the resistance of the sensor increased as
a result of various strains. It can be noted that the strain sensor
with different designed angle present different performance.
When the angle was 90◦, the GF was 3.4, while the GF can be
up to 4570.6 when the angle decreased to 0◦. The coefficient
of determination (R2) for the angle of 90◦, 60◦ and 30◦ were
0.9975, 0.9950 and 0.9754, respectively, within 20% strain,
showing a good linear relationship. The sensor with the angle
of 0◦ had two linear regions which possessed GFs as high
as 242.6 (ε < 5%) and 4570.6 (5% < ε < 8%) and the coef-
ficient of determination was 0.9610 and 0.8789 respectively.
Further, the sample of 90◦ angle can be stretched up to 50%
strain and still kept conductive with a good linear relationship,
figure 4(b), whichmake it suitable for large deformation detec-
tion. Through the simulation result in figure 4(d(i)), it is sug-
gested that stresses concentrate mainly at the bottom of the
microgrooves, which was corresponded to the FSEM images
in figures 3(b(iii)) and (b(iv)). The relationship between the
sensitivity and angle could be explained as: at the angle of
90◦, a microcrack at the bottom cannot extend to whole length

of the microgroove within tiny strain; while at the angle of
0◦, a microcrack at the bottom can extend to whole width
of the microgroove within tiny strain which block the con-
ductive pathway obviously; hence, the sensor designed with
lower angle could bear lager stretching and it can be concluded
that the sensor’s sensitivity increased with the decrease of the
angle. Consequently, different angle led to broad-range sens-
itivity, which has potential for various applications.

Furthermore, when the hatch spacing was less than the
laser facula’s width (∼25 µm), sufficient overlaps between
the tracks were favourable to form a relatively flat surface.
This made it possible to design complicated surface morpho-
logy. When the hatch spacing was 5 µm, intensive tracks
reinforced thermal effect, which caused more thickness loss
of cPDMS. To further investigate the influence of structural
design on the sensitivity of flexible strain sensors, the result-
ing surface topography (figure S2) was studied by five para-
meters: the depth H of the engraved groove, the distance D
between neighboring engraved microgrooves, the top width L
of the engraved microgroove, and the bottom width L2 and L3
of the engraved microgroove, which were all labeled in table
S1. Through a statistical analysis, L increase with more scan-
ning lines while the depth had no significant change. Referring
to the above finding, surface morphology can be designed into
different duty ratios (= L/D) with the same distance (D), such
as 1/4, 2/5, 2/4, 3/5 and 3/4. The simulation result of different
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Table 2. Summary of the performance of sensitivity-tunable strain
sensors reported.

Reference
Stretchability
(%) Gauge factor Linearity

Preparation
time

[31] 70% 2–14 Linear >7 h
[32] 260% 4.5–70 Nonlinear >4.5 h
[33] 0.8% 0.61–6.42 Linear Not

mentioned
[34] 130% 4.4–772.6 Nonlinear >30 h
[35] 1% 18.60–290.62 Nonlinear Not

mentioned
This work 50% 3.4–4570.6 Linear 4.6 h

duty ratios has been shown in figure 4(d(ii)), from which we
can find that stresses mainly concentrate at the bottom of
the microgrooves. The experiment result has been shown in
figure 4(c). When the duty ratio increased from 1/4 to 3/4,
the sensitivity achieved higher and the GF ranged from 5.0
to 13.67 with good linearity. Higher duty ratios indicate more
laser-scanned areas and more micro/nanostructures on the sur-
face of the substrate which could make more cracks under
similar strain levels and enhance the sensitivity of the strain
sensor.

A summary of performance results of recently sensitivity-
tunable strain sensors has been reported in table 2. Compared
to many other available techniques, the experiment results
effectively demonstrate selective laser ablation as a convenient
technique for rapid prototyping of sensitivity-tunable strain
sensors.

3.4. Bending sensor test

To meet the requirement for wearable devices, the bending
performance of the fabricated sensor was further tested. The
surface-structured cPDMS composite film was mechanically
bent using a tensile testing machine. The bending radius was
calculated through post-processing. Figures 5(a) and (b) show
the relative change in resistance at different bending radius.
When the sensor was bent outwards, figure 5(a), the sensor
performed as stretched. As a result, the resistance increased
with the decrease of the bending radius. On the contrary, when
the sensor was bent inwards, figure 5(b), adjacent Ag particles
contacted each other and the conductivity increasedwhich per-
formed as a decrease of resistance.

Furthermore, a cyclic tensile test with 1000 cycles was per-
formed, figure 5(c). In the subsequent stable stage, there is no
apparent fluctuation and the resistance change was almost the
same as each cycle. The cracking under strain and release were
reversible, which explained the high durability of this strain
sensor.

3.5. Demonstrations for different requirements of sensitivity

The sensitive strain sensor can be used as wearable devices for
health monitoring. Wrist pulse is a significant physiological
indicator for determining arterial blood pressure and heart-
beat. As shown in figure 6(a), the sensor was mounted on

Figure 5. Sensing performances under bending and cyclic test
under strain up to 20%. (a) The relative resistance change of sensors
when bent inwards. (b) The relative resistance change of sensors
when bent outwards. The inset shows the bending process and
calibration of the radius. (c) Mechanical test under a strain of 20%
for 1000 cycles.

the volunteer’s wrist. When the volunteer caught a cold, the
pulse was weak and was difficult to be detected by the sensor.
The single collected by the same volunteer under health status
demonstrated a regular pulse shape with a heart rate of ∼75
beats per minute (bpm). Generally, each cycle of pulse rate has
three characteristic peaks: percussion (P), tidal (T), and dia-
stolic (D) [38]. After exercise, the volunteer’s pulse was racing
and the amplitude of the signal became greater than normal.

A sensor was attached to the throat of the volunteer.
When the volunteer spoke several words, such as ‘hello’,
‘how’, ‘are’, and ‘you’, the sensor recorded specific patterns
(figure 6(b)) by the value of ∆R/R0 for each phonation. Each
word resulted in distinct movements of the laryngeal prom-
inence and the sensor responded with distinguishing differ-
ent signals. The same patterns were produced when the words
were repeated, suggesting the sensor’s reliability for use as
voice recognition.

The reversibility and stretchability of strain sensors dis-
played the possible application as an over-strain alarm. As
shown in figure 6(c), a strain sensor with 90◦ designed pat-
tern was connected to a light-emitting diode (LED) in series
provided with a suitable source voltage. In the beginning, the
sensor performed as a conducting wire when the LED was
lit. When the sensor was stretched, the light turned dim. Once
exceeding a critical strain of over 50%, the sensor switched to
a failure state and the LEDwent out suddenly. When the strain
was released, the circuit returned to connection and the LED
lit again. The LED’s extinguishment could be recognized as an
alarm signal and the sensor protected the circuit from critical
strains.
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Figure 6. Application demonstrations. (a) Detection of the pulse signal under different condition. (b) The skin-attachable voice recognition.
(c) Protective functions of the sensor in a circuit against a critical strain. (d) Surface shape measurement.

When the sensor was bent at different orientations, the rel-
ative change of the resistance has different performance. The
resistance increased when the sensor was bent outwards and
decreased when bent inwards. As a result, the sensor can be
used to detect the degree of a curved surface. As shown in
figure 6(d), the arc length of the laser-scanned part was 30 mm
and the length of the part connected to the copper wire was
10 mm on each side. When the sensor was attached to dif-
ferent parts of a curved track, the change of resistance was
recorded and then turned into the deformation curvature. Adja-
cent sensors were supposed to have the same or opposite bend-
ing orientation. Two different conditions were discussed in the
tables S2 and S3. Through the formula, the shape of each part
of the track can be predicted. Figure 4(d) shows the predicted

result and actual shape of the track. The position error of the
ending spot was guaranteed within 15 mm which indicated
the potential application in surface shape measurement for soft
robotics.

4. Summary

In this work, a method for sensitivity-tunable strain sensor
is proposed by combining laser ablation and Ag deposition
on the cPDMS substrate. Selective laser ablation is estab-
lished as a convenient fabrication approach to create differ-
ent surface topography on elastomeric polymer substrate at
different scanning speeds and hatch spacing which could be
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adjusted to tune the electrical performances of the sensors.
The micro/nanostructures on the laser-scanned surface made
cracks originate and propagate upon stretching as sensing
mechanism. The fabricating process of strain sensors provides
a new way to develop sensors with tunable GF ranging from
3.4 to 4570.6 under larger strain which has a great potential in
wearable electronic devices.
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